Submit your construction content here

Email us

  • 17 Oct 2018
    Flooring in food and beverage environments must be slip-resistant, easy to clean, durable and hygienic. These factors pose significant challenges to flooring designs; not only do most floors have to be purpose-built, they must be functional, meeting the strict criteria stipulated above. So what kinds of design considerations need to be made to ensure floors meet hygiene standards at the point of specification? Keeping it clean Floor finish is a key design consideration which should fulfill a variety of standards in the European Food Safety Directive. In food preparation areas, flooring must be seamless and easy to clean to meet hygiene levels, particularly as the spread of bacteria must be prevented in food environments at all times. Flooring must also be rinsed thoroughly to remove wash-down residues and any viruses, bacteria or pests that might be present. The finish should also be compatible with certain solvents, including cleaning agents, for the quality of the finish to remain uncompromised. A finish needs to be impermeable and made to a high specification otherwise employee and consumer safety could be put at risk. An excellent finish,often best provided by dense resin-rich systems, will prevent flaking, cracking and discolouration, making sure a floor looks professional and performs to its best. Drainage must be placed in correct areas and never under processing equipment as it obstructs important cleaning procedures. With the assistance of gravity, gradients ranging between 1:100 and 1:80 can be useful for moving any liquids towards drains. Efficient drainage systems are fundamental design considerations as they guarantee cleanliness is maintained at an optimum standard in food environments. Slip-resistanc Floor finishes must also be slip-resistant. Slips and trips are the most common causes of injury at work, accounting for an average 33% of total work injuries. Injuries tend to occur most often in areas where meat, fruit, vegetable, fat and other residues are present. To counteract this, companies can choose flooring that has an optimum combination of grip and wash-ability to keep employees safe and the facility supremely clean. The most common method of providing grip to new flooring is to apply aggregate onto the top of the wet surface before it hardens. Aggregate varies in size and type and can create numerous profiles. The most common types are silica, quartz, flint, and aluminum oxide. Durable designs Flooring in food environments must be able to withstand high-impact shock and abrasions, whether from large mechanical shocks or a drop of a heavy knife. In the food sector, floors will be put under a significant amount of stress given the nature of the environment, therefore cleanliness, durability and safety are complete priorities. Flooring solutions must also be compatible with cleaning agents to ensure longevity. Floors with low chemical resistance not only wear down faster, they also create traps for bacteria and viruses can hide.Be mindful of the volume of volatile organic compounds (VOCs) emitted by various floor, wall, ceiling, and other finishes. Flooring products with low VOC emission means air is kept clean, resulting in safer food production and a healthier working environment for employees. Finding the right flooring system which fulfills a variety of challenging design aspects is difficult, especially in relation to the food industry. With countless years of experience, Sikafloor® systems are created and installed to meet all of these challenging requirements thanks to their flexible design possibilities. From floor finish to drainage system, to durability, Sikafloor® has companies covered.  Visit: www.sika.co.uk
    54 Posted by Talk. Build
  • Flooring in food and beverage environments must be slip-resistant, easy to clean, durable and hygienic. These factors pose significant challenges to flooring designs; not only do most floors have to be purpose-built, they must be functional, meeting the strict criteria stipulated above. So what kinds of design considerations need to be made to ensure floors meet hygiene standards at the point of specification? Keeping it clean Floor finish is a key design consideration which should fulfill a variety of standards in the European Food Safety Directive. In food preparation areas, flooring must be seamless and easy to clean to meet hygiene levels, particularly as the spread of bacteria must be prevented in food environments at all times. Flooring must also be rinsed thoroughly to remove wash-down residues and any viruses, bacteria or pests that might be present. The finish should also be compatible with certain solvents, including cleaning agents, for the quality of the finish to remain uncompromised. A finish needs to be impermeable and made to a high specification otherwise employee and consumer safety could be put at risk. An excellent finish,often best provided by dense resin-rich systems, will prevent flaking, cracking and discolouration, making sure a floor looks professional and performs to its best. Drainage must be placed in correct areas and never under processing equipment as it obstructs important cleaning procedures. With the assistance of gravity, gradients ranging between 1:100 and 1:80 can be useful for moving any liquids towards drains. Efficient drainage systems are fundamental design considerations as they guarantee cleanliness is maintained at an optimum standard in food environments. Slip-resistanc Floor finishes must also be slip-resistant. Slips and trips are the most common causes of injury at work, accounting for an average 33% of total work injuries. Injuries tend to occur most often in areas where meat, fruit, vegetable, fat and other residues are present. To counteract this, companies can choose flooring that has an optimum combination of grip and wash-ability to keep employees safe and the facility supremely clean. The most common method of providing grip to new flooring is to apply aggregate onto the top of the wet surface before it hardens. Aggregate varies in size and type and can create numerous profiles. The most common types are silica, quartz, flint, and aluminum oxide. Durable designs Flooring in food environments must be able to withstand high-impact shock and abrasions, whether from large mechanical shocks or a drop of a heavy knife. In the food sector, floors will be put under a significant amount of stress given the nature of the environment, therefore cleanliness, durability and safety are complete priorities. Flooring solutions must also be compatible with cleaning agents to ensure longevity. Floors with low chemical resistance not only wear down faster, they also create traps for bacteria and viruses can hide.Be mindful of the volume of volatile organic compounds (VOCs) emitted by various floor, wall, ceiling, and other finishes. Flooring products with low VOC emission means air is kept clean, resulting in safer food production and a healthier working environment for employees. Finding the right flooring system which fulfills a variety of challenging design aspects is difficult, especially in relation to the food industry. With countless years of experience, Sikafloor® systems are created and installed to meet all of these challenging requirements thanks to their flexible design possibilities. From floor finish to drainage system, to durability, Sikafloor® has companies covered.  Visit: www.sika.co.uk
    Oct 17, 2018 54
  • 15 Oct 2018
    High-rise curtain wall buildings have become architectural statements across the globe, their façades projecting image and a creative intent which sets them apart from other buildings across city skylines. While curtain walls offer formability, durability and weather resistance, it’s vitally important that passive fire protection and compartmentation measures are installed to limit the spread of fire, saving lives and property. Chris Hall, Commercial Development Officer at SIDERISE, feels that passive fire protection solutions such as firestops are crucial to prevent the passage of flames and noxious gases travelling from one compartment floor or room to the next. Fires in high-rise buildings can generate large quantities of smoke that tend to spread vertically throughout the building, even if the fire is contained to one room. When the gap/cavity at the perimeter edge between the floor and curtain wall is not properly sealed, flames and smoke can spread vertically to higher floors, and horizontally from one room to the next. Addressing these gaps/cavities by properly installing firestops maintains the floors’ fire compartmentation of the building. This delays vertical smoke-spread and reduces the risk of smoke-related injury in the upper floors of the building, and adjacent rooms. Closing the gap The perimeter barrier firestops seal the gap between the edge of the compartmentfloor slab and external curtain wall. Due to project designs and site tolerances, this linear gap can be variable, so the firestop system used needs to have a degree of ‘dynamic’ movement capability – compression and recovery – in order to accommodate serviceability movement, and more significant movement under fire load. It’s critical the firestop system does this in combination with the primary functional requirement, which is to maintain continuity of fire resistance between the compartmentfloor and the external wall. The installed firestop system needs to match the same period of fire resistance as the compartment floor. All firestop systems need to be tested to two criteria – Integrity and Insulation (EI). Integrity (E) refers to the ability of the system to prevent the passage of flame, smoke and combustible gases either through, and around the material or through joints in an assembly; while Insulation (I) refers to a measure of the increase in conducted heat transferred from the exposed to unexposed surfaces of 180°C rises above ambient. These two criteria are critical in the development of curtain wall perimeter firestop products. The most effective products combine a number of material features – density, thickness, resin content, fibre structure and controlled compression – which together determine the resistance properties. When looking at the Integrity (E) criteria, the material chosen must be impervious to the transfer of flame and gases, easy to install with minimal site management and accommodate all real-world requirements at interfaces, joints and details. In order to meet the fire and smoke stop requirements in all external façade applications, Certifire Approved perimeter barrier and firestop systems offer an unrivalled combination of fully-qualified performance, practical installation and service benefits. The principal function of these systems is to maintain continuity of fire resistance by sealing the gap between the compartment floors or walls and external curtain walls horizontally and vertically. These systems can offer tested fire rating options ranging from 30 minutes to five hours and accommodate void widths up to 1200mm. In addition to providing an effective seal against the passage of smoke and fire, the products will also function as an effective acoustic barrier and plenum lining. Key design considerations The firestop should be installed under compression and must have test evidence to show that it is capable of accommodating movement of a façade. It is imperative that the installed seal is able to function effectively with due regard to all designed movement serviceability limits.  Curtain walling and cladding façade systems will deflect due to positive and negative windloads as well as occupational live loads.  These criteria are covered by EN 13116:2001.  Typically, a project may stipulate that the curtain walling system may have the following allowable deflection limits: Under the declared wind loads the maximum frontal deflection of the curtain walling’s framing members shall not exceed L/200 or 15mm, whichever is less, when measured between the points of support or anchorage to the building’s structure in compliance with EN 13116. (Extract from EN 138300) These factors may inevitably combine to preclude the suitability and therefore, use of certain systems e.g. high density material slab products. Perimeter barriers must be installed to provide horizontal compartmentation at every floor level.  Vertical cavity barriers should be provided as a minimum to fall in line with any compartment wall and more frequently if dictated by the fire strategy of the building. Products should be fitted tightly around all bracketry to restrict the passage of smoke.  Where there is potential for gaps, the product must be sealed with a sealant that carries the same fire insulation and integrity rating as the perimeter barrier. All installations should be in accordance with manufacturers’ instructions and where fixing brackets are required these should be fitted and spaced in accordance with a certified fire test report. Products used for fire safety installation should carry an independent third party certification in order to ensure that the product supplied is the same as that tested. The gap between the slab edge and the façade is often a weak point acoustically.  Any products used to improve the acoustic performance must not contribute to the fire load or inhibit the performance of the perimeter barrier. Seal the voids At the $135 million Al Fattan Crystal Towers in the Dubai Marina, UAE, fire safety was paramount in a development which houses hotel rooms, suites and residential apartments. With both vertical and horizontal fire compartmentation requirements, the specification of SIDERISE CW-FS 120 firestops provided the contractor Cladtech with a one-stop-shop solution that could maintain a fire and smoke seal in one product and could successfully fill lineargaps at the podium levels in excess of 300mm. For the two towers, Cladtech installed 12,000 LM of SIDERISE CW-FS 120 firestops including horizontal (floor slab) and vertical compartmentation. With the timeline on the project critical, the use of this dry fix system enabled the work to be completed quickly and efficiently, ready for handover to subcontractors.   Throughout the application, SIDERISE provided comprehensive support including drawing assistance, liaison with the authorities for approval, installation training and periodic site inspection and assistance. Whilst specifying the correct product is vital, the quality of installation is equally as important.  Contractors installing life saving measures such as perimeter barriers and firestops must have adequate training on the particular manufacturer’s products and be qualified to install it in the first place.  When it comes to saving lives and protecting businesses and property, a well designed and installed system can make the difference.  Visit: www.siderise.com
    77 Posted by Talk. Build
  • High-rise curtain wall buildings have become architectural statements across the globe, their façades projecting image and a creative intent which sets them apart from other buildings across city skylines. While curtain walls offer formability, durability and weather resistance, it’s vitally important that passive fire protection and compartmentation measures are installed to limit the spread of fire, saving lives and property. Chris Hall, Commercial Development Officer at SIDERISE, feels that passive fire protection solutions such as firestops are crucial to prevent the passage of flames and noxious gases travelling from one compartment floor or room to the next. Fires in high-rise buildings can generate large quantities of smoke that tend to spread vertically throughout the building, even if the fire is contained to one room. When the gap/cavity at the perimeter edge between the floor and curtain wall is not properly sealed, flames and smoke can spread vertically to higher floors, and horizontally from one room to the next. Addressing these gaps/cavities by properly installing firestops maintains the floors’ fire compartmentation of the building. This delays vertical smoke-spread and reduces the risk of smoke-related injury in the upper floors of the building, and adjacent rooms. Closing the gap The perimeter barrier firestops seal the gap between the edge of the compartmentfloor slab and external curtain wall. Due to project designs and site tolerances, this linear gap can be variable, so the firestop system used needs to have a degree of ‘dynamic’ movement capability – compression and recovery – in order to accommodate serviceability movement, and more significant movement under fire load. It’s critical the firestop system does this in combination with the primary functional requirement, which is to maintain continuity of fire resistance between the compartmentfloor and the external wall. The installed firestop system needs to match the same period of fire resistance as the compartment floor. All firestop systems need to be tested to two criteria – Integrity and Insulation (EI). Integrity (E) refers to the ability of the system to prevent the passage of flame, smoke and combustible gases either through, and around the material or through joints in an assembly; while Insulation (I) refers to a measure of the increase in conducted heat transferred from the exposed to unexposed surfaces of 180°C rises above ambient. These two criteria are critical in the development of curtain wall perimeter firestop products. The most effective products combine a number of material features – density, thickness, resin content, fibre structure and controlled compression – which together determine the resistance properties. When looking at the Integrity (E) criteria, the material chosen must be impervious to the transfer of flame and gases, easy to install with minimal site management and accommodate all real-world requirements at interfaces, joints and details. In order to meet the fire and smoke stop requirements in all external façade applications, Certifire Approved perimeter barrier and firestop systems offer an unrivalled combination of fully-qualified performance, practical installation and service benefits. The principal function of these systems is to maintain continuity of fire resistance by sealing the gap between the compartment floors or walls and external curtain walls horizontally and vertically. These systems can offer tested fire rating options ranging from 30 minutes to five hours and accommodate void widths up to 1200mm. In addition to providing an effective seal against the passage of smoke and fire, the products will also function as an effective acoustic barrier and plenum lining. Key design considerations The firestop should be installed under compression and must have test evidence to show that it is capable of accommodating movement of a façade. It is imperative that the installed seal is able to function effectively with due regard to all designed movement serviceability limits.  Curtain walling and cladding façade systems will deflect due to positive and negative windloads as well as occupational live loads.  These criteria are covered by EN 13116:2001.  Typically, a project may stipulate that the curtain walling system may have the following allowable deflection limits: Under the declared wind loads the maximum frontal deflection of the curtain walling’s framing members shall not exceed L/200 or 15mm, whichever is less, when measured between the points of support or anchorage to the building’s structure in compliance with EN 13116. (Extract from EN 138300) These factors may inevitably combine to preclude the suitability and therefore, use of certain systems e.g. high density material slab products. Perimeter barriers must be installed to provide horizontal compartmentation at every floor level.  Vertical cavity barriers should be provided as a minimum to fall in line with any compartment wall and more frequently if dictated by the fire strategy of the building. Products should be fitted tightly around all bracketry to restrict the passage of smoke.  Where there is potential for gaps, the product must be sealed with a sealant that carries the same fire insulation and integrity rating as the perimeter barrier. All installations should be in accordance with manufacturers’ instructions and where fixing brackets are required these should be fitted and spaced in accordance with a certified fire test report. Products used for fire safety installation should carry an independent third party certification in order to ensure that the product supplied is the same as that tested. The gap between the slab edge and the façade is often a weak point acoustically.  Any products used to improve the acoustic performance must not contribute to the fire load or inhibit the performance of the perimeter barrier. Seal the voids At the $135 million Al Fattan Crystal Towers in the Dubai Marina, UAE, fire safety was paramount in a development which houses hotel rooms, suites and residential apartments. With both vertical and horizontal fire compartmentation requirements, the specification of SIDERISE CW-FS 120 firestops provided the contractor Cladtech with a one-stop-shop solution that could maintain a fire and smoke seal in one product and could successfully fill lineargaps at the podium levels in excess of 300mm. For the two towers, Cladtech installed 12,000 LM of SIDERISE CW-FS 120 firestops including horizontal (floor slab) and vertical compartmentation. With the timeline on the project critical, the use of this dry fix system enabled the work to be completed quickly and efficiently, ready for handover to subcontractors.   Throughout the application, SIDERISE provided comprehensive support including drawing assistance, liaison with the authorities for approval, installation training and periodic site inspection and assistance. Whilst specifying the correct product is vital, the quality of installation is equally as important.  Contractors installing life saving measures such as perimeter barriers and firestops must have adequate training on the particular manufacturer’s products and be qualified to install it in the first place.  When it comes to saving lives and protecting businesses and property, a well designed and installed system can make the difference.  Visit: www.siderise.com
    Oct 15, 2018 77
  • 09 Oct 2018
    London Mayor Sadiq Khan has already gone on record to state that he wants to make the Capital a zero-carbon city by 2050 writes Kevin Knapp, CEO, Ecolution Renewables. It will be a major challenge and one that will only be achieved if Londoners are willing to embrace green technology. The Mayor has already put his considerable political weight behind a Solar Action Plan to persuade homeowners and businesses across the Capital to install photovoltaic panels to generate green electricity – and thousands are taking advantage of this initiative, benefitting from reduced installation costs and long term energy savings. It’s a welcome step forward but more could be done if householders and businesses would be willing to accept the Mayor’s challenge and even better – be prepared to go that extra mile, to help reduce air pollution across the Capital while significantly reducing reliance on fossil fuels. We call that extra mile #JointheEcolution which combines photovoltaic panels with advanced HyCube battery storage units further linked to electric charging points (EV) turning every household and business into its own virtual power station. With more electric cars on the road it means less pollution. Photovoltaics linked to storage units would also help to make buildings energy self-sufficient, with the ability to save and share that energy with others. It’s joined up green energy which could totally transform the way we power our homes and businesses in the future. The advantages are there for all to see. In the first month alone of 2018, London’s air pollution reached the legal limit for the entire year so anything that encourages the use of electric cars has to be welcome. Air toxicity has been at illegal levels in urban areas in the UK, including London, since 2010, resulting in around 40,000 early deaths a year. Add on our reliance on fossil fuels and nuclear and the word green seems a long way off. Now is the time to change all that and invest in renewables otherwise what will we leave for the next generation – London smog. As I recall - we have been there before and we did not like it. Visit: www.ecolutiongroup.com
    106 Posted by Talk. Build
  • London Mayor Sadiq Khan has already gone on record to state that he wants to make the Capital a zero-carbon city by 2050 writes Kevin Knapp, CEO, Ecolution Renewables. It will be a major challenge and one that will only be achieved if Londoners are willing to embrace green technology. The Mayor has already put his considerable political weight behind a Solar Action Plan to persuade homeowners and businesses across the Capital to install photovoltaic panels to generate green electricity – and thousands are taking advantage of this initiative, benefitting from reduced installation costs and long term energy savings. It’s a welcome step forward but more could be done if householders and businesses would be willing to accept the Mayor’s challenge and even better – be prepared to go that extra mile, to help reduce air pollution across the Capital while significantly reducing reliance on fossil fuels. We call that extra mile #JointheEcolution which combines photovoltaic panels with advanced HyCube battery storage units further linked to electric charging points (EV) turning every household and business into its own virtual power station. With more electric cars on the road it means less pollution. Photovoltaics linked to storage units would also help to make buildings energy self-sufficient, with the ability to save and share that energy with others. It’s joined up green energy which could totally transform the way we power our homes and businesses in the future. The advantages are there for all to see. In the first month alone of 2018, London’s air pollution reached the legal limit for the entire year so anything that encourages the use of electric cars has to be welcome. Air toxicity has been at illegal levels in urban areas in the UK, including London, since 2010, resulting in around 40,000 early deaths a year. Add on our reliance on fossil fuels and nuclear and the word green seems a long way off. Now is the time to change all that and invest in renewables otherwise what will we leave for the next generation – London smog. As I recall - we have been there before and we did not like it. Visit: www.ecolutiongroup.com
    Oct 09, 2018 106
  • 08 Oct 2018
    If you think that some of the tallest towers in the world are impressive now, then you’ve seen nothing yet. Not only will the next generation of skyscrapers be in amongst the tallest in the world, with one becoming THE tallest and by a long way, they are also far greener too. Below is a graphic that highlights these new cloud puncturing structures, what they’ll have inside them and the green features that have been incorporated as well. Visit: http://rubberbond.co.uk
    116 Posted by Talk. Build
  • If you think that some of the tallest towers in the world are impressive now, then you’ve seen nothing yet. Not only will the next generation of skyscrapers be in amongst the tallest in the world, with one becoming THE tallest and by a long way, they are also far greener too. Below is a graphic that highlights these new cloud puncturing structures, what they’ll have inside them and the green features that have been incorporated as well. Visit: http://rubberbond.co.uk
    Oct 08, 2018 116
  • 05 Oct 2018
    We’re in the middle of a shift in the world of architecture, construction, engineering and design writes Damian O'Neill, Director at Lyons O'Neill. We’ve just had London Design Festival, a week celebrating creativity and innovation in British design and inspiring the public and those in the industry to think about its future. This year’s festival had several arresting public installations: from Es Devlin’s roaring red poetry lion in Trafalgar Square and Kellenberger’s alphabet chairs to the Cross-Laminated Timber maze-pavillion in the V&A courtyard by Waugh Thistleton Architects. Architecture and design hit mainstream national headlines, reminding us of the great impact structures have. However, although each of these examples were uniquely thought-provoking, they all had something in common, reflecting a shift in thinking seen in the rest of the Festival as well as the architecture and design space as a whole. What linked these innovative projects was their exploration of the active relationship between a man-made structure and the environment, urban and natural. Both in terms of materials used, responding to the pressing need for environmental sustainability, and incorporation of their site-specific context, these projects demonstrate that in architecture we can no longer think of structures as static, monolithic objects, but as needing to adapt and relate to their surroundings and users. In addition to envisioning structures as relationships rather than objects, in conversation with the world, we’re also beginning to explore the impact buildings have on our natures. Research has shown that in the hippocampal part of our brain we have special cells which respond to the geometry and arrangement of the spaces we are in. And there are increasing studies being published which document the mental and emotional impact design has on the people who use a space. When designing, we therefore not only need to understand how a structure will affect and be affected by its natural environment, but the social role it plays. Alarge part of rethinking the built environment’s relationship with nature is by paying greater attention and respect to nature. In many ways, nature is the ultimate architect, displaying a breath-taking complexity and variety of design in its vast web of connections. Pioneering architecture and engineering is now about learning from this interconnection and seeking to work with, not against nature, designing structures to visually and physically integrate with their surroundings. And this new way of thinking isn’t just for design festivals and one-off flagship projects. A project of any scale should seek to marry nature with design and this begins right from the planning and drawings stage. Thoroughly researching the environmental conditions of an area will highlight which design elements and materials are most suited to the project and will minimise lasting disruption. For example, our award-winning Resedale House project came with a number of design considerations due to its sloping rural site and sustainability goals, but our close collaboration with Khoury Architects meant these were incorporated into the stunning and lightweight structure that was created. Using split levels to maximise space whilst minimising building height, as well as adding a lake area, meant the project was visually in tune with its surroundings. And strategically placed glazed facades meant the house’s inhabitants could enjoy the full benefit of the rural location and natural light. Architecture and design have many challenges ahead, both in the planning and construction stages. But this shouldn’t stifle creativity and inspiration but rather multiply it, as we understand that our structures, as well as ourselves, are in conversation with nature and all its beauty. Visit: http://www.lyonsoneill.co.uk    
    317 Posted by Talk. Build
  • We’re in the middle of a shift in the world of architecture, construction, engineering and design writes Damian O'Neill, Director at Lyons O'Neill. We’ve just had London Design Festival, a week celebrating creativity and innovation in British design and inspiring the public and those in the industry to think about its future. This year’s festival had several arresting public installations: from Es Devlin’s roaring red poetry lion in Trafalgar Square and Kellenberger’s alphabet chairs to the Cross-Laminated Timber maze-pavillion in the V&A courtyard by Waugh Thistleton Architects. Architecture and design hit mainstream national headlines, reminding us of the great impact structures have. However, although each of these examples were uniquely thought-provoking, they all had something in common, reflecting a shift in thinking seen in the rest of the Festival as well as the architecture and design space as a whole. What linked these innovative projects was their exploration of the active relationship between a man-made structure and the environment, urban and natural. Both in terms of materials used, responding to the pressing need for environmental sustainability, and incorporation of their site-specific context, these projects demonstrate that in architecture we can no longer think of structures as static, monolithic objects, but as needing to adapt and relate to their surroundings and users. In addition to envisioning structures as relationships rather than objects, in conversation with the world, we’re also beginning to explore the impact buildings have on our natures. Research has shown that in the hippocampal part of our brain we have special cells which respond to the geometry and arrangement of the spaces we are in. And there are increasing studies being published which document the mental and emotional impact design has on the people who use a space. When designing, we therefore not only need to understand how a structure will affect and be affected by its natural environment, but the social role it plays. Alarge part of rethinking the built environment’s relationship with nature is by paying greater attention and respect to nature. In many ways, nature is the ultimate architect, displaying a breath-taking complexity and variety of design in its vast web of connections. Pioneering architecture and engineering is now about learning from this interconnection and seeking to work with, not against nature, designing structures to visually and physically integrate with their surroundings. And this new way of thinking isn’t just for design festivals and one-off flagship projects. A project of any scale should seek to marry nature with design and this begins right from the planning and drawings stage. Thoroughly researching the environmental conditions of an area will highlight which design elements and materials are most suited to the project and will minimise lasting disruption. For example, our award-winning Resedale House project came with a number of design considerations due to its sloping rural site and sustainability goals, but our close collaboration with Khoury Architects meant these were incorporated into the stunning and lightweight structure that was created. Using split levels to maximise space whilst minimising building height, as well as adding a lake area, meant the project was visually in tune with its surroundings. And strategically placed glazed facades meant the house’s inhabitants could enjoy the full benefit of the rural location and natural light. Architecture and design have many challenges ahead, both in the planning and construction stages. But this shouldn’t stifle creativity and inspiration but rather multiply it, as we understand that our structures, as well as ourselves, are in conversation with nature and all its beauty. Visit: http://www.lyonsoneill.co.uk    
    Oct 05, 2018 317
  • 03 Oct 2018
    Bridges carry you across the water, or across a busy road, but you might not have bothered to pay much attention to what is under your feet. Then again, not all bridges are built equal. Some are built from sketches that were lost for 400 years. Some are said to be built by the Devil himself! Here, Oasys, structure analysis software providers, take a look at these fascinating structures…  1.      The Rolling Bridge – UK Photograph by Loz Pycock This amazing steel bridge was created by Heatherwick studios to cross an inlet in London. What makes this bridge so unique is that it can tidy itself away! When needed, this bridge curls up into an octogen shape to stand on one side of the canal until a boat passes. The bridge also curls up every day at noon, if you want to see it in action!  Da Vinci Bridge – Norway Photograph by Egil Kvaleberg This next bridge, in Norway, was built from designs intended to be used in Istanbul that were drawn up by Leonardo da Vinci. The original drawing had a single span of 240 metres, but the project did not go ahead as it was believed that such a design was not feasible. As the first major engineering feat from a da Vinci drawing, the bridge finally came into the world in Norway. The bridge has just three arches to support the structure. Though the Norwegian bridge is a smaller version of the original plans, it shows that the design works — one arch under the bridge, and two arches either side leaning inwards to spread the weight.  The Devil’s Bridge – Germany Photograph by A. Landgraf Known as Rakotzbrücke, the bridge’s appearance looks like a perfect circle. The bridge is said to have been commissioned by a knight in 1860. But the rocks and stones used for its creation are jagged and spikey, so it was dangerous to cross. The bridge’s design was deemed a masonry challenge, according to Earth Trekkers. The idea was that only Satan himself could help with a difficult build such as these bridges, and the first human who crossed the completed bridge would pay for the Devil’s helping hand by giving up his soul. The bridge is no longer open to be crossed, due to preservation measures. But it is still an oddly beautiful sight to behold!  Fire-breathing dragon Bridge — Vietnam Photograph by Ehrin Macksey / Noi Pictures This next bridge might be the most flamboyant build on our list. Located in Da Nang in Vietnam, the Dragon Bridge is certainly a spectacular sight! The bridge is the result of an international competition by the Da Nang People’s Committee in order to improve travel in the city. The bridge has six lanes for vehicles, two lanes for pedestrians, and 2,500 LED lights. Of course, as a dragon, the bridge can breathe fire! In fact, the bridge can spout water or fire, and this display is often used for special occasions in the city.  Living Roots Bridges – India Photograph by Arshiya Urveeja Bose If ever there were living examples of the payoff of patience, these bridges are just that. These beautifully natural bridges were formed by guiding rubber tree roots with hollow canes so that they would grow outwards and meet from either side of a stream. It would take years to reach the opposite bank, but the hard work paid off as these Living Roots bridges can support the weight of a human. They were originally made by the Khasi tribe, who realised the bamboo bridges they were building would collapse or rot after a monsoon or heavy storm. Sources: https://bocadolobo.com/blog/architecture/10-of-the-worlds-most-beautiful-and-unique-bridges/ https://www.popularmechanics.com/technology/design/g248/4335705/ http://boredomtherapy.com/unique-bridges-around-the-world/ https://en.wikipedia.org/wiki/Azalea_and_Rhododendron_Park_Kromlau https://en.wikipedia.org/wiki/Living_root_bridges https://www.bemytravelmuse.com/rakotzbrucke-devils-bridge/ https://www.earthtrekkers.com/rakotzbrucke-fairytale-bridge-saxony-germany/ https://www.flickr.com/people/45649858@N08 http://www.bbc.com/travel/story/20150218-indias-amazing-living-root-bridges https://www.flickr.com/photos/blahflowers/ https://www.visitbritain.com/gb/en/rolling-bridge-london
    120 Posted by Talk. Build
  • Bridges carry you across the water, or across a busy road, but you might not have bothered to pay much attention to what is under your feet. Then again, not all bridges are built equal. Some are built from sketches that were lost for 400 years. Some are said to be built by the Devil himself! Here, Oasys, structure analysis software providers, take a look at these fascinating structures…  1.      The Rolling Bridge – UK Photograph by Loz Pycock This amazing steel bridge was created by Heatherwick studios to cross an inlet in London. What makes this bridge so unique is that it can tidy itself away! When needed, this bridge curls up into an octogen shape to stand on one side of the canal until a boat passes. The bridge also curls up every day at noon, if you want to see it in action!  Da Vinci Bridge – Norway Photograph by Egil Kvaleberg This next bridge, in Norway, was built from designs intended to be used in Istanbul that were drawn up by Leonardo da Vinci. The original drawing had a single span of 240 metres, but the project did not go ahead as it was believed that such a design was not feasible. As the first major engineering feat from a da Vinci drawing, the bridge finally came into the world in Norway. The bridge has just three arches to support the structure. Though the Norwegian bridge is a smaller version of the original plans, it shows that the design works — one arch under the bridge, and two arches either side leaning inwards to spread the weight.  The Devil’s Bridge – Germany Photograph by A. Landgraf Known as Rakotzbrücke, the bridge’s appearance looks like a perfect circle. The bridge is said to have been commissioned by a knight in 1860. But the rocks and stones used for its creation are jagged and spikey, so it was dangerous to cross. The bridge’s design was deemed a masonry challenge, according to Earth Trekkers. The idea was that only Satan himself could help with a difficult build such as these bridges, and the first human who crossed the completed bridge would pay for the Devil’s helping hand by giving up his soul. The bridge is no longer open to be crossed, due to preservation measures. But it is still an oddly beautiful sight to behold!  Fire-breathing dragon Bridge — Vietnam Photograph by Ehrin Macksey / Noi Pictures This next bridge might be the most flamboyant build on our list. Located in Da Nang in Vietnam, the Dragon Bridge is certainly a spectacular sight! The bridge is the result of an international competition by the Da Nang People’s Committee in order to improve travel in the city. The bridge has six lanes for vehicles, two lanes for pedestrians, and 2,500 LED lights. Of course, as a dragon, the bridge can breathe fire! In fact, the bridge can spout water or fire, and this display is often used for special occasions in the city.  Living Roots Bridges – India Photograph by Arshiya Urveeja Bose If ever there were living examples of the payoff of patience, these bridges are just that. These beautifully natural bridges were formed by guiding rubber tree roots with hollow canes so that they would grow outwards and meet from either side of a stream. It would take years to reach the opposite bank, but the hard work paid off as these Living Roots bridges can support the weight of a human. They were originally made by the Khasi tribe, who realised the bamboo bridges they were building would collapse or rot after a monsoon or heavy storm. Sources: https://bocadolobo.com/blog/architecture/10-of-the-worlds-most-beautiful-and-unique-bridges/ https://www.popularmechanics.com/technology/design/g248/4335705/ http://boredomtherapy.com/unique-bridges-around-the-world/ https://en.wikipedia.org/wiki/Azalea_and_Rhododendron_Park_Kromlau https://en.wikipedia.org/wiki/Living_root_bridges https://www.bemytravelmuse.com/rakotzbrucke-devils-bridge/ https://www.earthtrekkers.com/rakotzbrucke-fairytale-bridge-saxony-germany/ https://www.flickr.com/people/45649858@N08 http://www.bbc.com/travel/story/20150218-indias-amazing-living-root-bridges https://www.flickr.com/photos/blahflowers/ https://www.visitbritain.com/gb/en/rolling-bridge-london
    Oct 03, 2018 120

  • Once you have planned where your shed will go you need to make sure you have all the right tools and products to complete the job such as: Pegs and string Building sand Standard cement Timber for base formwork Tape measure Spade Sweeping brush 1. Prepare the base When you do this allow enough distance from hedges or fences for easy access to all sides. Use the pegs and string to mark out a base 2” (5 cm) larger than the area of the building on each side. Make sure the area is square by using a level diagonally across the area 2. Pay attention to the hardcore Ensure that you have at least 3” (7.5 cm) of compacted hardcore underneath a 3″ concrete layer. The base can be level with the ground or raised above it. If you want it to be level, dig to a depth of 6” (15 cm), to allow for the hardcore layer and 3” (7.5 cm) of concrete. Level the area with a rake and spade and remove the pegs. 3. Make sure it’s level Measure, cut and fit timber to the shape of the base in order to contain the concrete. Check diagonal measurements to ensure the formwork is square and level as this will determine whether your shed base is 100% sturdy. Spread the hardcore and cover with a good level of sand. Ensure it is well compacted and flattened using a compacting tool or roller. 4: Next the concrete Mix concrete using one part cement to five parts all-in-one ballast, or use bags of dry-mixed concrete and just add water. Be careful not to add too much water as this may make the cement too runny. Spread the concrete evenly and slightly above the formwork. This can be then levelled off with a long straight edge of timber resting on the formwork. Use a sawing motion slowly over the entire surface of the freshly laid concrete. In extreme weather conditions – both hot and cold – ensure that you base is covered to allow it to cure slowly, minimising the risk if shrinking or cracking – and there you have it – the perfect base for your new shed. You could of course then decide to build your own shed but as we discussed earlier – why would you want to when there are so many brilliant alternatives that have been prefabricated offsite and ready to be place on your new base. Talk.Build never makes recommendations but as a starting point you might want to visit:  Sheds
    Jul 30, 2018 137
  • We have seen many different types of architectural software over recent years and while it seems that most do very good jobs there have also been many adverse comments that products are not delivering. Understandably most professionals are confused with the wide range of products on offer. Many look at niche options which do not quite hit the mark but with the right software and a modern computer, the entire plan of a building can be rendered and checked for structural and design flaws before it even leaves the drawing board. This is more efficient, less wasteful, and a lot more convenient as well. BIM Modelling has also demanded that architects design and produce in both 2D and 3D and as a result there have been major development in design software which allows professionals to draw and visualise house floor plans more quickly and easily One such company, Elecosoft, seems to have gone further than most with its own bespoke package, “Arcon Evo”, which combines visual design, professional CAD capabilities and clear project execution in a single program. The new software also offers an extensive range of architectural CAD tools for all aspects of building design allowing architects to construct to the smallest level of detail. It also produces detailed plans, automated 3D models, elevations, section details and working drawings and much more. At the front end it will also generate detailed drawing sets for planning applications with many additional features which many of my colleagues in the trade press are endorsing as a major leap forward. To some extent I guess I am doing the same but rather than list all the benefits, which can be seen on the company’s website – the link is featured at the bottom of this article - I am more interested in how architects themselves have responded. In the past, as mentioned earlier, we have seen many different software packages which all claim to bring architects and building professionals into the 21st Century but have failed to deliver when it matters. According to the professionals “Arcon Evo” does exactly what it says on the tin and is more than capable of producing detailed 2D and 3D designs and it seems a whole lot more. Guess it is down to our readers to decide. Visit: www.3darchitect.co.uk
    Jul 26, 2018 605
  • Once water begins to come through the roof most sheds, by the very nature of their soft wood structure, quickly rot and if remedial action is not taken then most will soon be looking for a replacement. Replacing a felt roof is not as hard as it looks and only requires basic DIY skills and a little help from a friend or neighbour. Simply follow these easy steps and your shed will be as good as new. You will need at least half a day to complete the project and will require Shed Felt, Roofing Felt Adhesive and Clout Head Nails. Make sure you also have the right tools such as a tape measure, sharp knife gloves, an old cloth, straight edge hammer 2” or 3” and a disposable paint brush. Before you start clean and tidy up the surrounding area, including the floor. To ensure you are properly prepared for later, unpack and roll your shed felt onto a clean and dry surface. This allows it to relax or straighten after being rolled up. Roofing felt is harder to work at low temperature so try to avoid working with it below 10° or in wet or windy conditions. Prepare the surface of the shed roof by removing any old roof felt or nails. Ensure the surface is flat, clean and dry. If the roof is rotten or damaged, you may want to apply a complete new sheet of ply. Measure your shed by running a tape measure along the bottom of the roof (the eaves), and up the diagonal end (the gable). Write down these measurements (it’s easiest to use metric as shed felt normally comes in 8m or 10m rolls). Remember too that you will need the felt to overhang each gable end, and the eave of the shed by at least 50mm (so you need to add this to your measurements). Calculate how many lengths of roof felt are needed: The felt will be applied in strips, with each strip overlapping the previous one by at least 75mm. A final length sheet will be required along the ridge. Calculate how many strips and of what length you will need. Cut your roof felt to length: Using your straight edge and sharp knife, carefully cut your felt to the correct length (don’t forget to include the extra 50mm overhang at each end!) Nail on the first length: Position the first length of roof felt along the lowest part of the shed roof. Ensure that it overhangs the eaves and each gable end of the roof by 50mm. Nail along the top edge of the strip with the galvanised clout nails. Space the nails at 500mm centres. Fold over the gables and eaves: Starting at the centre of the eave, and taking care not to rip or tear the felt, fold the overhanging felt over the edge of the roof. Fix the overhanging felt using galvanised nails at 50mm. Fix the next length of shed felt: Take your second length of felt. Position this strip so that it overhangs the top of the first sheet by 75mm. Nail along the top of this strip at 500mm. Where the sheets overlap, apply roofing sheet adhesive using a disposable brush. Using a downwards brushing motion, firmly press the top layer of roofing felt onto the adhesive, taking care to ensure that the strip of felt does not ripple or crease. Nail in place at 50mm spacing along the bottom of the strip. Use an old cloth or rag to remove any excess felt adhesive. Continue to work up the complete side of the roof in the same method. Felt the second side of your shed: Repeat the same process for the opposite side of the roof. Fix the capping sheet: The roof should be finished with a capping sheet along the ridge. Place along the ridge of the shed so that it equally overhangs each side of the roof. Always ensure that it overlays the top strips of felt by at least 75mm. Apply roofing felt adhesive to the underside of both sides of the ridge and press the capping sheet into place. Nail along the bottom of each side of the capping sheet at 50mm intervals. And that is all there is to it to ensure that your shed continues to provides many more years of useful life. You can source the materials you need from most local builders merchants or go on line. You can click the link below to Amazon to a supplier that has a five star rating if you prefer to have materials delivered. Click Link for Amazon
    Apr 25, 2018 362
  • Roofs, conservatories, balconies, terraces and walls are extremely prone to water penetration and left alone will ultimately result in major refurbishment. Until fairly recently construction professionals would use a variety of different sealants to tackle an equally wide variety of leak situations, but thankfully science has come to the rescue. There are several companies that have developed advanced ranges of waterproofing solutions that can be simply brushed or rolled onto surfaces, seeping into cracks and other vulnerable areas to produce a barrier, once fully cured, against even the worst weather. Many of these solutions are transparent and virtually invisible once applied which makes them ideal for all types of glass such as conservatory roofs and roof lights. They can also be used on terraces and exposed brickwork helping to enhance the colour of the stone while adding total protection. The good thing is that such solutions can be applied by without any special skills saving householders massive labour costs, but as in all cases, particularly when a leak is at roof level, it is usually best to call in the professionals. If you are planning to do it yourself then make sure that you have enough material; to complete the job. A 20Kg tin will cover around 25 sq metres of surface area depending on the thickness of the coating. Ensure that everything is cleaned up before any solution is laid to ensure maximum performance and ideally three layers should be used on the surface area. Coverage is based on application by roller onto a smooth surface in optimum conditions. Factors like surface porosity, temperature and application method can alter consumption. Installed correctly your roof, conservatory, balcony, terrace or wall will continue to giver many more years of service keeping out the worst of the weather.  If you are looking for such a product then why not check out Maritrans, which is available via Amazon.  Click here for Amazon
    Apr 24, 2018 330
  • It is easier than it looks to build a raised timber deck.  Timber decks can be designed to meet most design situations. According to the Timber Decking and Cladding Association Desired service life options of 15, 30 and 60 years are given in European/British standards. It should be noted that 15 years is considered to be the minimum standard.  For new the NHBC insists on a 60 year service life in accordance with TDCA Code of Practice TDA/RD 08/01. Building a simple timber deck is straightforward and is considered less expensive and more environmentally acceptable than bricks or flagstones. The following step-by-step guide covers and is consistent with most of the basic applications to install timber decking and while these instructions are for guidance only please always remember to check with supplier specifications. Step 1: Make sure you plan in advance to ensure that boards will be flush with your frame. Prepare a level area for the framework by cutting the timber to the required length, then join using exterior wood screws. Check the frame is square by measuring from corner to corner and adjust if necessary Step 2: If you need to raise the frame, cut four blocks of timber to the desired height. Screw these to the inside of the frame at each corner, ensuring they're flush with the top. As these legs will be taking all the weight ensure you use at least three screws per block, Step 3: Place blocks or slabs underneath edge leg to spread the load and provide a level, stable base if your deck is sitting on grass or soil. Position and adjust checking the frame is level using a spirit level Step 4: Three joists are sufficient (one in the middle and the others at the centre-point between the edge of the frame and the centre joist) if you are building a small deck. Mark across one side of the frame first, then repeat on the opposite side. On larger decks, set joists at 400mm centres Step 5: Ensure that you measure across the inside of the frame at the joist marks before cutting lengths of the timber to suit. Fix the joists by tapping them with a rubber based mallet until flush with the top, then screw them in place from the outside of the frame Step 6: Support the joists with additional legs, spaced at 1m intervals. Follow the same method as shown in steps 2 and 3 for these legs, ensuring each is supported by a suitable block or slab Step 7: For the facing, measure the length of the outer sides of your frame and cut the decking boards to suit. Mark the cutting lines with a square to ensure a straight edge. Countersink the facing and screw to the frame, ensuring the facing is flush with the top Step 8: Now you are ready to start laying the deck. Measure across the top of the frame and cut a board to length. Place the first board flush with the outside edge of the frame and facing, and perpendicular to the joists. Mark the location of each joist on the board Step 9: Mark and countersink screw holes over the centre of each joist. Be sure to use a sharp countersink that will leave a clean hole. If necessary, drill a pilot hole to prevent splitting. Use at least two screws per joist for each decking board Step 10: Ensure you have a 5mm expansion gap between each board (as timber expands and contracts according to outdoor temperatures). Use a spacer to do this. Step 11: Continue the process until you have completed the job. There are many different sources for Timber Decking but we recomend the following link to AMAZON. Click here for Amazon
    Sep 16, 2017 1406
  • Horrible looking drains, manhole covers and inspection chambers appear in driveways and footpaths everywhere. You can even find them in the middle of your lawn or garden! How do you hide ugly manhole covers and drains?                     There are several ways to pretty up these ugly necessities but, however you choose to do it, remember that water utility companies require access at all times. If they cannot be accessed when required they will be dug up and not only will you receive a bill for doing so, you will also be left with the expense of repairing any damage. A much better idea is to (where possible) replace the existing industrial looking cover with a removable recessed (or inset) tray. Then you have the option to either blend them in with the surface or make a feature out of them. Recessed tray options A quick internet search will show you just how many different types of recessed trays are available – too many to mention here! You choose depending on where they are and what material you are going to fill them with. Basically they fall into two categories: Standard recessed tray Currently the most popular choice, made from polypropylene, aluminium or stainless steel and can be suitable for use by both pedestrians and vehicles. Permeable recessed tray This more recent option from EcoGrid provides a load bearing surface that features membranes and a perforated base which allows water to slowly filter through to the drain underneath. Infill options Another internet search will result in a lot of options for infilling a recessed tray. Your final choice will depend on where the drain, manhole cover or inspection chamber is and what the surface will be used for. Here are a few of the most popular infill options: Block paving or bricks These are common choices and can be cut to either blend in or contrast with the surrounding surface. Resin bound paving This is the most popular choice for the seamless finish - created by infilling the recessed tray with the same colour aggregate. You can also create contrast by using a different colour or produce a logo or design in the recessed tray. Using a permeable recessed tray with resin bound paving creates a fully permeable surface. Loose gravel Probably the quickest and easiest way to infill a recessed tray is with loose gravel, but it will inevitably scatter. The fleeing gravel will need regular sweeping and replacing and your lawn mower won’t like it much either... Grass Whilst sowing grass seeds into a recessed tray blends in with a lawn it can be awkward to mow and unless it’s sown in a permeable recessed tray, it will dry out very quickly. Of course you could opt for artificial grass… Plants and flowers Infilling with flowers and/or plants can help disguise unsightly drains, manhole covers or inspection chambers. You can also create a spectacular feature, but as with grass they will dry out very quickly unless a permeable recessed tray is used. Useful links: How to build a recessed manhole cover : http://www.diy.com/help-ideas/how-to-build-a-manhole-cover/CC_npcart_400198.art An overview http://www.pavingexpert.com/recess01.htm  from the Paving Expert. We strongly recommend clarifying ownership and responsibility before modifying or carrying out maintenance to drains, sewers and manholes. Author: Gail Gilkes, Head of Marketing, SureSet UK Ltd. Visit: www.sureset.co.uk Follow us: https://twitter.com/SureSetUK https://www.youtube.com/user/SureSetUK15 https://www.linkedin.com/company-beta/1220581/
    Sep 14, 2017 2315